HIF- and non-HIF-Regulated Hypoxic Responses Require the Estrogen-Related Receptor in Drosophila. Keith D. Baker1, Yan Li1, Divya Padmanabha1, Luciana B. Gentile1, Catherine I. Dumur2, Robert B. Beckstead3. 1) Biochemistry and Molecular Biology, VCU School of Medicine, Richmond, VA; 2) Pathology, VCU School of Medicine, Richmond, VA; 3) Poultry Science, University of Georgia, Athens, GA.

   Low-oxygen tolerance is supported by an adaptive response that includes a coordinate shift in metabolism and the activation of a transcriptional program that is driven by the hypoxia-inducible factor (HIF) pathway. The precise contribution of HIF-1 in the adaptive response, however, has not been determined. Here, we investigate how HIF influences hypoxic adaptation throughout Drosophila development. We find that hypoxic-induced transcriptional changes are comprised of HIF-dependent and HIF-independent pathways that are distinct and separable. We show that normoxic set-points of carbohydrate metabolites are significantly altered in sima mutants and that these animals are unable to mobilize glycogen in hypoxia. Furthermore, we find that the estrogen-related receptor (dERR), which is a global regulator of aerobic glycolysis in larvae, is required for a competent hypoxic response. dERR binds to dHIF and participates in the HIF-dependent transcriptional program in hypoxia. In addition, dERR acts in the absence of dHIF in hypoxia and a significant portion of HIF-independent transcriptional responses can be attributed to dERR actions, including upregulation of glycolytic transcripts. These results indicate that competent hypoxic responses arise from complex interactions between HIF-dependent and -independent mechanisms, and that dERR plays a central role in both of these programs.